Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush.

نویسندگان

  • Brett M Morrison
  • Akivaga Tsingalia
  • Svetlana Vidensky
  • Youngjin Lee
  • Lin Jin
  • Mohamed H Farah
  • Sylvain Lengacher
  • Pierre J Magistretti
  • Luc Pellerin
  • Jeffrey D Rothstein
چکیده

Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of Epidermal-Type Fatty Acid Binding Protein (E-FABP) in Degeneration and Regeneration of Sciatic Nerve after Crush Injury in Mouse

Purpose:The regeneration of axon and myelin sheet after crush injury of peripheral nerves involves interaction of several types of cells, including Schwann cells, monocyte, macrophage and fibroblast. Among them, haematogenous macrophages invading into the peripheral nervous systein play a major role in myelin uptake during Wallerian degeneration. Materials and Methods: In this study 35 C57/BL6 ...

متن کامل

Acetyl salicylic acid augments functional recovery following sciatic nerve crush in mice

Cyclin-dependent kinase 5 (CDK-5) appears to play a significant role in peripheral nerve regeneration as CDK-5 inhibition retards nerve regeneration following nerve crush. Anti-inflammatory drug acetyl salicylic acid elevates CDK-5 and reduces ischemia - reperfusion injury in cultured neurons. In this study we have evaluated the effect of acetyl salicylic acid on functional recovery following s...

متن کامل

The regenerative deficit of peripheral nerves in experimental diabetes: its extent, timing and possible mechanisms.

Diabetes mellitus is reported to impair peripheral nerve regeneration, but the extent, timing and selectivity of the deficit is unclear. We studied regeneration of motor and sensory fibres in mice with experimental diabetes induced using streptozotocin (STZ). The mouse model featured several advantages over its counterpart in rats given STZ, while exhibiting the expected slowing of motor conduc...

متن کامل

The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves

The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...

متن کامل

The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves

The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 263  شماره 

صفحات  -

تاریخ انتشار 2015